Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Diabetes Obes Metab ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38660748

RESUMEN

AIMS: To investigate whether gamma-aminobutyric acid (GABA) supplementation improves insulin resistance during olanzapine treatment in mice and to explore the underlying mechanisms. MATERIALS AND METHODS: Insulin resistance and body weight gain were induced in mice by 10 weeks of olanzapine treatment. Simultaneously, the mice were administered GABA after 4 weeks of olanzapine administration. RESULTS: We found that mice treated with olanzapine had lower GABA levels in serum and subcutaneous white adipose tissue (sWAT). GABA supplementation restored GABA levels and improved olanzapine-induced lipid metabolism disorders and insulin resistance. Chronic inflammation in adipose tissue is one of the main contributors to insulin resistance. We found that GABA supplementation inhibited olanzapine-induced adipose tissue macrophage infiltration and M1-like polarization, especially in sWAT. In vitro studies showed that stromal vascular cells, rather than adipocytes, were sensitive to GABA. Furthermore, the results suggested that GABA improves olanzapine-induced insulin resistance at least in part through a GABAB receptor-dependent pathway. CONCLUSIONS: These findings suggest that targeting GABA may be a potential therapeutic approach for olanzapine-induced metabolic disorders.

2.
J Nat Med ; 78(2): 393-402, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38175326

RESUMEN

Akebia saponin D (ASD) is a bioactive triterpenoid saponin extracted from Dipsacus asper Wall. ex DC.. This study aimed to investigate the effects of ASD on allergic airway inflammation. Human lung epithelial BEAS-2B cells and bone marrow-derived mast cells (BMMCs) were pretreated with ASD (50, 100 and 200 µΜ) and AMPK activator 5-aminoimidazole-4-carboxamide-1-ß-D-ribofuranoside (AICAR) (1 mM), and then stimulated with lipopolysaccharide (LPS) or IL-33. Pretreatment with ASD and AICAR significantly inhibited TNF-α and IL-6 production from BEAS-2B cells, and IL-13 production from BMMCs. Moreover, pretreatment with ASD and AICAR significantly increased p-AMPK expression in BEAS-2B cells. Inhibition of AMPK by siRNA and compound C partly abrogated the suppression effect of ASD on TNF-α, IL-6, and IL-13 production. Asthma murine model was induced by ovalbumin (OVA) challenge and treated with ASD (150 and 300 mg/kg) or AICAR (100 mg/kg). Infiltration of eosinophils, neutrophils, monocytes, and lymphocytes, and production of TNF-α, IL-6, IL-4, and IL-13 were attenuated in ASD and AICAR treated mice. Lung histopathological changes were also ameliorated after ASD and AICAR treatment. Additionally, it showed that treatment with ASD and AICAR increased p-AMPK expression in the lung tissues. In conclusion, ASD exhibited protective effects on allergic airway inflammation through the induction of AMPK activation.


Asunto(s)
Saponinas , Factor de Necrosis Tumoral alfa , Ratones , Humanos , Animales , Factor de Necrosis Tumoral alfa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Interleucina-6 , Interleucina-13 , Inflamación/tratamiento farmacológico , Saponinas/farmacología , Saponinas/uso terapéutico , Ratones Endogámicos BALB C
3.
Sci Total Environ ; 912: 168947, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043820

RESUMEN

Formaldehyde (FA) exposure has been reported to induce or aggravate allergic asthma. Infection is also a potential risk factor for the onset and aggravation of asthma. However, no study has addressed the effects of FA exposure on asthmatic patients with respiratory infection. FA is ubiquitous in environment and respiratory infections are common in clinics. Therefore, it is necessary to explore whether FA exposure leads to the further worsening of symptoms in asthma patients with existing respiratory infection. In the present study, ovalbumin (OVA) was used to establish the murine asthma model. Lipopolysaccharide (LPS) was intratracheal administrated to mimic asthma with respiratory infection. The mice were exposed to 0.5 mg/m3 FA. FA exposure did not induce a significant aggravation on OVA induced allergic asthma. However, the lung function of specific airway resistance (sRaw), histological changes and cytokines production were greatly aggravated by FA exposure in OVA/LPS induced murine asthma model. Monocyte-derived macrophages (MDMs) were isolated from asthmatic patients. Exposure of MDMs to FA and LPS resulted in increased TNF-α, IL-6, IL-1ß, and nitric oxide (NO) production. Lactate produciton and lactate dehydrogenase A (LDHA) expression were found to be upregulated by FA in OVA/LPS induced asthmatic mice and LPS stimulated MDMs. Furthermore, glycolysis inhibitor 2-Deoxy-d-glucose attenuated FA and LPS induced TNF-α, IL-6, IL-1ß, and NO production. We conclude that FA exposure can lead to the aggravation of allergic asthma with infection through induction of glycolysis. This study could offer some new insight into how FA promotes asthma development.


Asunto(s)
Asma , Lipopolisacáridos , Hipersensibilidad Respiratoria , Humanos , Ratones , Animales , Lipopolisacáridos/toxicidad , Interleucina-6/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Asma/metabolismo , Inflamación , Formaldehído/toxicidad , Glucólisis , Modelos Teóricos , Ratones Endogámicos BALB C , Pulmón , Líquido del Lavado Bronquioalveolar , Citocinas/metabolismo
4.
BMC Med ; 20(1): 279, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36058909

RESUMEN

BACKGROUND: Some occult hepatitis B virus (HBV) infections are resulted from PreS mutations that reduce secretion of envelope protein (HBsAg). We investigated the ceramide amounts and species in hepatocytes infected with PreS variants that were isolated from HBsAg-seronegative patients with hepatocellular carcinoma (HCC) and the ceramide effects on autochthonous HCC development in murine models. METHODS: HBV PreS/S regions from 35 HBsAg-seronegative HCC patients were sequenced. Hepatocyte cell lines and male C57BL/6J mouse livers were transfected with two PreS variant representatives. The ceramides with variated lengths of fatty acyl chains were quantified. Tumour development was examined in the HBV-transfected mice fed different diet types. RESULTS: In HBsAg-seronegative HCC patients, nonneoplastic liver tissues harboured HBsAg and replication-competent HBV. The most frequently detected PreS/S variants carried mutations of altered amino acid properties in HBsAg compared with an isolate from one HBsAg-seronegative HCC patient. Hepatocyte infection with PreS variants caused HBsAg retention within the endoplasmic reticulum and generated more amounts of ceramides with C16:0 ceramide elevated the highest. Saturated fatty acids aggravated the PreS variant-infected hepatocytes to generate abnormal amounts and species of ceramides, which with HBV proteins synergistically activated NLRP3 inflammasome in liver inflammatory macrophages. Liver tumours were only detected in HBV-transfected mice fed high-fat diet, with higher tumour loads in the PreS variant-transfected, associated with abnormal ceramide generation. CONCLUSIONS: HBV PreS mutations which altered amino acid properties of envelope proteins inhibited HBsAg secretion. Hepatocyte infection with PreS variants generated abnormal ceramides which with HBV proteins coactivated NLRP3 inflammasome in liver macrophages to promote autochthonous HCC development.


Asunto(s)
Carcinoma Hepatocelular , Hepatitis B Crónica , Neoplasias Hepáticas , Aminoácidos/genética , Animales , Carcinoma Hepatocelular/genética , Ceramidas , Dieta Alta en Grasa/efectos adversos , Antígenos de Superficie de la Hepatitis B/genética , Virus de la Hepatitis B/genética , Inflamasomas , Neoplasias Hepáticas/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Proteína con Dominio Pirina 3 de la Familia NLR/genética
5.
Analyst ; 147(6): 1175-1180, 2022 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-35195627

RESUMEN

MRTX849 is a novel, highly selective, targeted inhibitor of KRAS (G12C), which significantly improves the objective response rate in patients with advanced solid tumors. However, neither an analytical HPLC-MS/MS assay nor pharmacokinetics has been reported for MRTX849 in plasma. In the present study, chromatography was accomplished on a reversed phase C18 column (50 × 2.1 mm, 3.5 µm). The limit of detection of MRTX849 was 0.02 ng mL-1 at S/N ≥ 3. Only 20 µL of plasma was utilized for accurate quantitation. The optimized analytical assay was fully validated and verified in accordance with guidelines. The calibration curve for MRTX849 was linear with a correlation coefficient >0.99 in the range of 0.05-200 ng mL-1. The intra- and inter-day accuracy and precision were all within ±10%. The matrix effect and recovery were consistent and acceptable under several quality control concentrations. This HPLC-MS/MS method was successfully applied for a pharmacokinetic study of MRTX849 at a dose of 15 mg kg-1.


Asunto(s)
Piperazinas , Espectrometría de Masas en Tándem , Acetonitrilos , Cromatografía Líquida de Alta Presión/métodos , Humanos , Pirimidinas , Reproducibilidad de los Resultados , Espectrometría de Masas en Tándem/métodos
6.
Front Immunol ; 13: 824607, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35222406

RESUMEN

Anlotinib (ANL) shows promising efficacy in patients with renal cell cancer (RCC). Here, for the first time, a serum eicosanoid metabolomics profile and pharmacodynamics in Renca syngeneic mice treated with ANL was performed and integrated using our previous HPLC-MS/MS method and multivariate statistical analysis. The tumor growth inhibition rates of ANL were 39% and 52% at low (3 mg/kg) and high (6 mg/kg) dose levels, without obvious toxicity. A total of 15 disturbed metabolites were observed between the normal group and the model group, and the intrinsic metabolic phenotype alterations had occurred due to the treatment of ANL. A total of eight potential metabolites from the refined partial least squares (PLS) model were considered as potential predictive biomarkers for the efficacy of ANL, and the DHA held the most outstanding sensitivity and specificity with an area under the receiver operating characteristic curve of 0.88. Collectively, the results of this exploratory study not only provide a powerful reference for understanding eicosanoid metabolic reprogramming of ANL but also offer an innovative perspective for the development of therapeutic targets and strategies, the discovery of predictive biomarkers, and the determination of effective tumor monitoring approaches.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Animales , Biomarcadores , Carcinoma de Células Renales/tratamiento farmacológico , Modelos Animales de Enfermedad , Eicosanoides/metabolismo , Humanos , Indoles , Neoplasias Renales/tratamiento farmacológico , Metabolómica/métodos , Ratones , Quinolinas , Espectrometría de Masas en Tándem/métodos
7.
Biomed Pharmacother ; 138: 111441, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33652261

RESUMEN

Metabolic syndrome (MetS) is a complex, multifactorial disease which lead to an increased risk of cardiovascular disease, type 2 diabetes, and stroke. However, selective, and potent drugs for the treatment of MetS are still lacking. Previous studies have found that Akebia saponin D (ASD) has beneficial effects on metabolic diseases such as obesity, atherosclerosis, and non-alcoholic fatty liver disease (NAFLD). Therefore, our study was designed to determine the effect and mechanism of action of ASD against MetS in a high-fat diet (HFD) induced mouse model. ASD significantly decreased plasma lipid and insulin resistance in these mice, and a targeted approach using metabolomic analyses of plasma and feces indicated that glucose and lipids in these mice crossed the damaged intestinal barrier into circulation. Furthermore, ASD was able to increase lipid excretion and inhibit intestinal epithelial lipid absorption. Results for gut microbiota composition showed that ASD significantly reduced HFD-associated Alistipes, Prevotella, and enhanced the proportions of Butyricimonas, Ruminococcus, and Bifidobacterium. After 14 weeks of ASD/fecal microbiota transplantation (FMT) interventions the developed gut barrier dysfunction was restored. Additionally, RNA-seq revealed that ASD reduced the lipid-induced tight junction (TJ) damage in intestinal epithelial cells via down-regulation of the PPAR-γ-FABP4 pathway in vitro and that use of the PPAR-γ inhibitor (T0070907) was able to partially block the effects of ASD, indicating that the PPAR-γ/FABP4 pathway is a critical mediator involved in the improvement of MetS. Our results demonstrated that ASD not only modifies the gut microbiome but also ameliorates the HFD-induced gut barrier disruption via down-regulation of the PPAR-γ-FABP4 pathway. These findings suggest a promising, and novel therapeutic strategy for gut protection against MetS.


Asunto(s)
Microbioma Gastrointestinal/efectos de los fármacos , Mucosa Intestinal/efectos de los fármacos , Síndrome Metabólico/tratamiento farmacológico , Saponinas/uso terapéutico , Animales , Línea Celular , Trasplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/fisiología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Masculino , Síndrome Metabólico/metabolismo , Síndrome Metabólico/patología , Ratones , Ratones Endogámicos C57BL , Saponinas/farmacología
8.
Int J Mol Sci ; 22(3)2021 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-33572987

RESUMEN

Glycosyltransferases (GTs) catalyze the synthesis of glycosidic linkages and are essential in the biosynthesis of glycans, glycoconjugates (glycolipids and glycoproteins), and glycosides. Plant genomes generally encode many more GTs than animal genomes due to the synthesis of a cell wall and a wide variety of glycosylated secondary metabolites. The Arabidopsis thaliana genome is predicted to encode over 573 GTs that are currently classified into 42 diverse families. The biochemical functions of most of these GTs are still unknown. In this study, we updated the JBEI Arabidopsis GT clone collection by cloning an additional 105 GT cDNAs, 508 in total (89%), into Gateway-compatible vectors for downstream characterization. We further established a functional analysis pipeline using transient expression in tobacco (Nicotiana benthamiana) followed by enzymatic assays, fractionation of enzymatic products by reversed-phase HPLC (RP-HPLC) and characterization by mass spectrometry (MS). Using the GT14 family as an exemplar, we outline a strategy for identifying effective substrates of GT enzymes. By addition of UDP-GlcA as donor and the synthetic acceptors galactose-nitrobenzodiazole (Gal-NBD), ß-1,6-galactotetraose (ß-1,6-Gal4) and ß-1,3-galactopentose (ß-1,3-Gal5) to microsomes expressing individual GT14 enzymes, we verified the ß-glucuronosyltransferase (GlcAT) activity of three members of this family (AtGlcAT14A, B, and E). In addition, a new family member (AT4G27480, 248) was shown to possess significantly higher activity than other GT14 enzymes. Our data indicate a likely role in arabinogalactan-protein (AGP) biosynthesis for these GT14 members. Together, the updated Arabidopsis GT clone collection and the biochemical analysis pipeline present an efficient means to identify and characterize novel GT catalytic activities.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Glicosiltransferasas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Pared Celular/genética , Pared Celular/metabolismo , Genoma de Planta , Glicosiltransferasas/metabolismo , Mucoproteínas/genética , Mucoproteínas/metabolismo , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Especificidad por Sustrato
9.
Cancer Chemother Pharmacol ; 87(1): 103-112, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33141329

RESUMEN

OBJECTIVE: Rate-limiting enzyme 3b-hydroxysteroid dehydrogenase type 1 (3ßHSD1) encoded by HSD3B1 catalyzes the transition of dehydroepiandrosterone (DHEA) to dihydrotestosterone (DHT). The HSD3B1 (1245C) variant renders 3bHSD1 of resistant to ubiquitination and degradation, leading to a large amount of protein accumulation in the cell. Multiple clinical studies have shown that this mutation was correlated with resistance to androgen-deprivation therapy in prostate cancer. However, the results were not consistent depending on different treatment strategy and in some researches, the number of observed cases was relatively small. METHODS: To determine the effects of HSD3B1 (1245C) variant on resistance to androgen-deprivation therapy in prostate cancer, we performed a meta-analysis of the available literature. Electronic database searches identified appropriately designed studies that detected HSD3B1 in prostate cancer. We conducted a systematic search of studies in the following databases: PubMed, and EMBASE published until August 10, 2020 using the following search terms: (HSD3B1 AND ((((prostate cancer) OR prostatic neoplasm) OR prostatic carcinoma) OR prostatic cancer). RESULTS: Eight researches were included in this research. The result validated that the HSD3B1 (1245C) variant allele was associated with a shorter PFS (HR, 1.97; 95% CI, 1.39-2.79; P = 0.0001) (homozygous wild-type group) in men with prostate cancer when treated with ADT, however, a higher PFS (HR, 0.68; 95% CI, 0.48-0.96; P = 0.03) when treated with ADT and CYP17A1 inhibitor. CONCLUSION: The HSD3B1 (1245C) variant is a predictor of ADT plus CYP17A1 inhibitor response in prostate cancer.


Asunto(s)
Antagonistas de Andrógenos/administración & dosificación , Complejos Multienzimáticos/genética , Progesterona Reductasa/genética , Neoplasias de la Próstata/tratamiento farmacológico , Esteroide Isomerasas/genética , Alelos , Antagonistas de Andrógenos/farmacología , Resistencia a Antineoplásicos , Humanos , Masculino , Mutación , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Esteroide 17-alfa-Hidroxilasa/antagonistas & inhibidores , Resultado del Tratamiento
10.
Dis Markers ; 2020: 8842320, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32733621

RESUMEN

Metabolic syndrome (MetS) is a health disorder characterized by metabolic abnormalities that predict an increased risk to develop cardiovascular disease (CVD) and type 2 diabetes. Biomarkers can provide an insight into the novel mechanism for MetS and can be potentially used for personalized response to therapies. We exploited a targeted HPLC-MS/MS method to characterize plasma amino acids and carnitine metabolic profile in MetS patients. A training set (40 cases and 40 controls) and validation set (80 MetS patients and 80 healthy controls) were carried out to find the metabolic profiles. We discovered two carnitine metabolites including hydroxydecanoyl carnitine and methylglutarylcarnitine. Our results indicated that the decreased level of hydroxydecanoyl carnitine and methylglutarylcarnitine may be associated with the risk of MetS. These biomarkers may improve the risk prediction and provide a novel tool for monitoring of the progression of disease and response to treatment in MetS patients.


Asunto(s)
Aminoácidos/sangre , Carnitina/sangre , Síndrome Metabólico/sangre , Metabolómica/métodos , Biomarcadores/sangre , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Espectrometría de Masas en Tándem
11.
Intervirology ; 63(1-6): 10-16, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32772018

RESUMEN

BACKGROUND: This study was planned to investigate the association betweenhuman cytomegalovirus (HCMV) infection and gastrointestinal cancer (GIC) risk, by undertaking a meta-analysis and case-control cross-sectional study. SUMMARY: A cross-sectional study analysis of 160 GIC patients and 100 control subjects indicated significantly higher HCMV prevalence in GIC patients based on the HCMV IgM test. However, a similar analysis based on an IgG test revealed no significant relationship. Further meta-analysis of 11 studies, including 1,044 patients and 991 healthy subjects, displayed HCMV infection as an important risk factor for not only colorectal cancer occurrence and development based on a HCMV DNA test, but also for GIC based on a HCMV IgM test. However, the IgG test again displayed no significant relationship between HCMV infection and GIC occurrence. Key Message: Overall, our study revealed that HCMV infection is associated with an increased GIC risk. However, additional studies are warranted to elucidate the molecular mechanism underlying this association.


Asunto(s)
Infecciones por Citomegalovirus/complicaciones , Neoplasias Gastrointestinales/etiología , Anciano , Anticuerpos Antivirales/sangre , Estudios Transversales , Citomegalovirus/genética , Citomegalovirus/inmunología , Citomegalovirus/aislamiento & purificación , Infecciones por Citomegalovirus/epidemiología , ADN Viral/análisis , Femenino , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Persona de Mediana Edad , Prevalencia , Factores de Riesgo
12.
Lipids Health Dis ; 19(1): 196, 2020 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-32829707

RESUMEN

BACKGROUND: Ceramide, a bioactive lipid, plays an essential role in the development of several pulmonary inflammatory diseases. Matrix metallopeptidase 9 (MMP-9) regulates the synthesis and degradation of extracellular matrix, and is associated with airway remodeling and tissue injury. This study was conducted to investigate the effects and underlying mechanisms of ceramide on MMP-9 expression in airway epithelium. METHODS: BEAS-2B cells, normal human bronchial epithelium cell lines, were pretreated with AG490, a selective janus tyrosine kinase 2 (JAK2) inhibitor, or Stattic, a selective signal transducer and activator of transcription 3 (STAT3) inhibitor. The cells were then stimulated with C6-ceramide. The levels of MMP-9 were determined by ELISA and real-time quantitative PCR (RT-qPCR). JAK2, phosphorylated JAK2 (p-JAK2), STAT3, and phosphorylated STAT3 (p-STAT3) expression was examined by Western blotting. BALB/c mice were pretreated with AG490 or Stattic before intratracheally instillated with C6-ceramide. Pathological changes in lung tissues were examined by Hematoxylin and Eosin staining, Periodic-acid Schiff staining, and Masson's trichrome staining. MMP-9, JAK2, p-JAK2, STAT3, and p-STAT3 expression in the lung tissues was examined by Western blotting. RESULTS: The expression of MMP-9, p-JAK2 and p-STAT3 in BEAS-2B cells was significantly increased after the treatment of C6-ceramide. Furthermore, the increased expression of MMP-9 induced by C6-ceramide was inhibited by AG490 and Stattic. Similar results were obtained in the lung tissues of C6-ceramide-exposed mice which were treated with AG490 or Stattic. CONCLUSIONS: Ceramide could up-regulate MMP-9 expression through the activation of the JAK2/STAT3 pathway in airway epithelium. Targeted modulation of the ceramide signaling pathway may offer a potential therapeutic approach for inhibiting MMP-9 expression. This study points to a potentially novel approach to alleviating airway remodeling in inflammatory airway diseases.


Asunto(s)
Janus Quinasa 2/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Factor de Transcripción STAT3/metabolismo , Western Blotting , Línea Celular , Ceramidas/uso terapéutico , Ensayo de Inmunoadsorción Enzimática , Humanos , Fosforilación/efectos de los fármacos , Reacción en Cadena en Tiempo Real de la Polimerasa , Transducción de Señal/efectos de los fármacos
13.
Life Sci ; 257: 117658, 2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32621921

RESUMEN

BACKGROUND: Curcumin (Cur) is a hydrophobic polyphenol compound derived from the rhizome of the herb Curcuma longa. Cur has a wide spectrum of biological and pharmacological activities. It has been shown that human cytomegalovirus (HCMV) infection was an important risk factor for atherosclerosis (AS) and Cur exhibited an outstanding anti-HCMV effect. However, anti-AS effects of Cur remain unclear when HCMV infected endothelial cells. AIMS: This study will investigate the anti-AS activities and mechanism of Cur,when HCMV infected in vivo and in vitro. MATERIALS AND METHODS: Cur (0.5, 1, and 2 µM) was used to explore the anti-AS activities and mechanism after HCMV infected endothelial cells in vitro. ApoE-/- mice were fed a high fat and cholesterol diet (HD) and given 4000,000 copies/mouse MCMV infection by intraperitoneal and treated with ganciclovir (5 mg/kg/d), Cur (25, 15 mg/kg/d) for 10 weeks in vivo. KEY FINDINGS: As our results showed that Cur inhibited CMV replication and proliferation, reduced the intracellular ROS overproduction, decreased the release of inflammatory cytokines, down-regulated the level of HMGB1-TLRS-NF-κB signaling pathway-related proteins in vitro experiments. Cur reduced the serum levels of LDL-C, TC and TG, significantly decreased the formation of atherosclerotic plaque in the aorta, reduced the lipid deposition in liver and inflammatory damage in heart, lung and kidney in vivo experiments. SIGNIFICANCE: This study showed that Cur prevent AS progression by inhibiting CMV activity and CMV-induced HMGB1-TLRS-NF-κB signaling pathway.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Curcumina/farmacología , Citomegalovirus/efectos de los fármacos , Animales , Antiinflamatorios no Esteroideos/farmacología , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/metabolismo , Curcuma/metabolismo , Curcumina/metabolismo , Citocinas/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Masculino , Ratones , Ratones Transgénicos , FN-kappa B/metabolismo , Extractos Vegetales/farmacología , Placa Aterosclerótica/metabolismo , Transducción de Señal/efectos de los fármacos
14.
Toxicol Appl Pharmacol ; 401: 115076, 2020 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-32479918

RESUMEN

Statin induced myopathy (SIM) is a main deleterious effect leading to the poor treatment compliance, while the preventive or therapeutic treatments are absent. Mounting evidences demonstrated that vitamin D plays a vital role in muscle as a direct modulator. The deficiency of vitamin D was considered as a cause of muscle dysfunction, whereas the supplementation resulted in a remission. However, there is no causal proof that vitamin D supplementation rescues SIM. Here, using the mice model of simvastatin-induced myopathy, we investigated the role of vitamin D supplementation and the mechanisms associated with mitochondria. Results indicated that simvastatin administration (80 mg/kg) impaired skeletal muscle with the increased serum creatine kinase (CK) level and the declined grip strength, which were alleviated by vitamin D supplementation. Moreover, vitamin D supplementation rescued the energy metabolism dysfunction in simvastatin-treated mice gastrocnemius by reducing the abnormal aggregation of muscular glycogen and lactic acid. Mitochondrial homeostasis plays a key role in the process of energy metabolism. Thus, the mitochondrial dysfunction is a mortal damage for the highly energy-requiring tissue. In our study, the mitochondrial cristae observed under transmission electron microscope (TEM) were lytic in simvastatin-treated gastrocnemius. Interestingly, vitamin D supplementation improved the mitochondrial cristae shape by regulating the expression of mitofusin-1/2 (MFN1/2), optic atrophy 1 (OPA1) and dynamin-related protein 1 (Drp1). As expected, the mitochondrial dysfunction and oxidative stress was mitigated by vitamin D supplementation. In conclusion, these findings suggested that moderate vitamin D supplementation rescued simvastatin induced myopathy via improving the mitochondrial cristae shape and function.


Asunto(s)
Suplementos Dietéticos , Mitocondrias/efectos de los fármacos , Enfermedades Musculares/inducido químicamente , Enfermedades Musculares/tratamiento farmacológico , Simvastatina/toxicidad , Vitamina D/administración & dosificación , Animales , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Mitocondrias/patología , Membranas Mitocondriales/efectos de los fármacos , Membranas Mitocondriales/metabolismo , Membranas Mitocondriales/patología , Enfermedades Musculares/metabolismo , Distribución Aleatoria
15.
J Pharm Biomed Anal ; 177: 112848, 2020 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-31479998

RESUMEN

Metabolic syndrome (MetS) is an important risk factor for type 2 diabetes, cardiovascular diseases and all-cause morbidity and mortality. Biomarkers can provide insight into the mechanism, facilitate early detection, and monitor progression of MetS and its response to therapeutic interventions. To identify potential biomarkers, we applied a non-targeted and targeted lipidomics method to characterize plasma metabolic profile in MetS patients. Metabolic profiling was performed on a non-target set (40 cases and 40 controls) on UHPLC-Q-TOF/MS and target set (80 MetS patients and 80 healthy controls) on UHPLC-Q-orbitrap MS. Using comprehensive screening and validation workflow, we identified a panel of three metabolites including PC(18:1/P-16:0), PC(o-22:3/22:3), PC(P-18:1/16:1). Our results indicated that the identified biomarkers may improve the risk prediction and provide a novel tool for monitoring of the progression of disease and response to treatment in MetS patients.


Asunto(s)
Metabolismo de los Lípidos , Lipidómica/métodos , Síndrome Metabólico/diagnóstico , Fosfatidilcolinas/sangre , Adulto , Biomarcadores/sangre , Biomarcadores/metabolismo , Estudios de Casos y Controles , Cromatografía Líquida de Alta Presión , Femenino , Humanos , Masculino , Síndrome Metabólico/metabolismo , Persona de Mediana Edad , Fosfatidilcolinas/metabolismo , Medición de Riesgo/métodos , Espectrometría de Masas en Tándem
16.
Inflammation ; 43(1): 326-335, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31701354

RESUMEN

Many studies have demonstrated an association between cytomegalovirus (CMV) infection and inflammatory bowel disease (IBD). Moreover, CMV infection is more common in patients with severe or steroid-refractory IBD. However, it is not clarified whether CMV worsens IBD or if it is merely a surrogate marker for IBD. Here, we used the dextran sodium sulfate (DSS)-induced colitis model to investigate if CMV infection exacerbates colitis. The mice were injected intraperitoneally with 10 MOI of murine CMV (MCMV) and thereafter, chronic colitis was induced by one cycle of DSS exposure. Anti-IL-23R mAb at 20 µg/mice and pyrrolidine dithiocarbamate (PDTC), an effective NF-κB inhibitor, at 50 mg/kg were administrated to the mice. The MCMV-infected mice had a shorter colon length and a higher histopathology score than the mock inoculum-treated mice, while anti-IL-23R mAb administration ameliorated the pathological changes. Expression of IL-23, phospho-NF-κB p65, and phospho-IκBα was upregulated in colon tissues of the MCMV-infected mice compared to mock inoculum-treated mice, while treatment with PDTC attenuated colonic IL-23 production. These data demonstrated that CMV infection could accelerate IBD development. This effect may be due to its activation on NF-κB signaling pathway and subsequently IL-23 production.


Asunto(s)
Colitis/virología , Colon/virología , Infecciones por Citomegalovirus/virología , Citomegalovirus/patogenicidad , Interleucina-23/metabolismo , Animales , Células Cultivadas , Colitis/inducido químicamente , Colitis/inmunología , Colitis/metabolismo , Colon/inmunología , Colon/metabolismo , Colon/patología , Citomegalovirus/inmunología , Infecciones por Citomegalovirus/inmunología , Infecciones por Citomegalovirus/metabolismo , Sulfato de Dextran , Modelos Animales de Enfermedad , Interacciones Huésped-Patógeno , Masculino , Ratones Endogámicos C57BL , Inhibidor NF-kappaB alfa/metabolismo , Fosforilación , Transducción de Señal , Factor de Transcripción ReIA/metabolismo , Regulación hacia Arriba
17.
Free Radic Biol Med ; 145: 357-373, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31614179

RESUMEN

Clusterin (CLU) is a stress-responding protein associated with cytoprotection in a broad range of pathological processes. However, clusterin's function in diabetes-induced endothelial dysfunction has not been defined. Herein, using two diabetes models, we investigated the role of clusterin in endothelial dysfunction triggered by diabetes and the molecular mechanisms involved. The results revealed that clusterin overexpression inhibited ICAM-1/VCAM-1 expression in aortas and improved endothelium-dependent vasodilatation in db/db diabetic mice and streptozotocin (STZ)-induced diabetes models. Consistently, in vitro, adenoviral clusterin overexpression reduced the expression of a range of pro-inflammatory cytokines and suppressed monocyte adhesion to endothelial cells subjected to high glucose and high palmitate. Further study indicated that clusterin overexpression mitigated mitochondrial excessive fission and reduced mitochondrial ROS production. Conversely, silencing clusterin aggravated mitochondrial fission and endothelial inflammatory activation in high glucose-exposed endothelial cells. Accumulating evidence indicates that impaired mitochondrial dynamics plays a considerable role in promoting endothelial dysfunction in diabetic subjects. Therefore, treatments targeting mitochondrial undue fission may be promising measures to prevent vascular complications of diabetes. Furthermore, AMP-activated protein kinase (AMPK) activation contributed to the modulation of mitochondrial dynamics executed by clusterin. Mechanistically, clusterin promoted the phosphorylation of AMPKα and its downstream target acetyl-CoA carboxylase (ACC), while the inhibition of AMPKα negated the improvement in mitochondrial dynamics provided by clusterin overexpression. Over all, these findings suggest that clusterin exerts beneficial effects in endothelial cells under diabetic conditions via inhibiting mitochondrial fragmentation mediated by AMPK.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Clusterina/genética , Diabetes Mellitus Experimental/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Enfermedades Vasculares/tratamiento farmacológico , Acetil-CoA Carboxilasa/genética , Animales , Aorta/metabolismo , Aorta/patología , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patología , Endotelio Vascular/efectos de los fármacos , Endotelio Vascular/patología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Molécula 1 de Adhesión Intercelular/genética , Ratones , Ratones Endogámicos NOD , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Dinámicas Mitocondriales/efectos de los fármacos , Fosforilación/efectos de los fármacos , Molécula 1 de Adhesión Celular Vascular/genética , Enfermedades Vasculares/complicaciones , Enfermedades Vasculares/genética , Enfermedades Vasculares/patología
18.
Atherosclerosis ; 285: 23-30, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30999121

RESUMEN

BACKGROUND AND AIMS: Akebia Saponin D (ASD) is a major bioactive triterpenoid saponin compound isolated from the Chinese herb Dipsacus asper wall (DSW). DSW has been long used as an anti-Alzheimer disease and anti-osteoporosis agent in clinics. However, anti-atherosclerotic effects of ASD have not been fully investigated. The objective of this study is to further investigate the anti-atherosclerotic activities and mechanisms of ASD in vivo and in vitro. METHODS: In in vitro experiments, ASD (50, 100, and 200 µM) was used to explore the effects of preventing H2O2-induced endothelial cell apoptosis and the possible mechanism involved. In in vivo experiments, ApoE-/- mice were fed a high fat diet (HFD) and treated with atorvastatin (10 mg/kg/d), ASD (50, 150, 450 mg/kg/d), or the combination therapy (atorvastatin 10 mg/kg/d and ASD 150 mg/kg/d) for 14 weeks. RESULTS: We found that ASD reduced the generation of reactive oxygen species, inhibited mitochondrial membrane potential (MMP) impairment, diminished the expression of Bax and Caspase-3, increased Bcl-2 expression, and inhibited apoptosis in endothelial cells. ASD significantly increased the expression of anti-oxidant enzymes (GSH, SOD, and CAT) in both liver and vascular tissue, reduced blood lipid levels (TG, TC, and LDL-C), and decreased lipid deposition in the liver and atherosclerotic lesion size in ApoE-/- mice. CONCLUSIONS: Our study revealed that ASD inhibited atherosclerosis development in ApoE-/- mice by inhibiting oxidative stress-induced endothelial cell apoptosis signaling pathway, and suggested that ASD might be a potential therapeutic drug in the prevention of atherosclerosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Aterosclerosis/prevención & control , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Saponinas/farmacología , Saponinas/uso terapéutico , Animales , Apolipoproteínas E/deficiencia , Células Cultivadas , Células Endoteliales/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL
19.
Lipids Health Dis ; 17(1): 263, 2018 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-30463568

RESUMEN

BACKGROUND: Metabolic syndrome is a common extrapulmonary comorbidity in patients with chronic obstructive pulmonary disease (COPD). However, the reported relationship of COPD with dyslipidemia, an important component of metabolic syndrome, is ambiguous. The aim of this meta-analysis is to investigate the association between COPD and the serum levels of high-density lipoprotein cholesterol (HDL), low-density lipoprotein cholesterol (LDL), total cholesterol (TC), and triglyceride (TG). METHODS: The PubMed and Embase databases were searched to find potential studies using the search terms of ("dyslipidemia" or "HDL" or "LDL" or "cholesterol" or "triglyceride") and COPD. We also performed subgroup analysis enrolling patients who were not receiving treatment for dyslipidemia. Mean differences (MD) with 95% confidence intervals (CI) were estimated with random effects models. RESULTS: A total of 11 studies comprising 615 cases and 471 controls were included in the study. No significant differences were found in the HDL (MD = -2.55, 95% CI [-6.03, 0.93], P = 0.15), LDL (MD = -2.25, 95% CI [-13.36, 8.86], P = 0.69), TC (MD = -2.69, 95% CI [-13.30, 7.92], P = 0.62), and TG (MD = 6.90, 95% CI [-2.81, 16.60], P = 0.16) levels of the 2 groups. However, subgroup analysis enrolling patients who were not receiving treatment for dyslipidemia showed that TG levels were higher in patients with stable COPD than in healthy individuals (MD = 16.35, 95% CI [5.90, 26.80], P = 0.002). CONCLUSIONS: Excluding the impact of hypolipidemic treatment on serum lipid profile, TG levels were higher in patients with COPD than in healthy individuals. This meta-analysis suggested that physicians should screen COPD patients for elevated TG levels to reduce the risk of cardiovascular morbidity and mortality.


Asunto(s)
Lípidos/sangre , Enfermedad Pulmonar Obstructiva Crónica/sangre , Colesterol/sangre , Femenino , Humanos , Lipoproteínas HDL/sangre , Masculino , Triglicéridos/sangre
20.
J Pharmacol Sci ; 136(4): 189-195, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29609842

RESUMEN

Akebia Saponin D (ASD) is the most abundant constituent of the rhizome of Dipsacus asper Wall. The prior studies have shown that ASD alleviates hepatic steatosis targeted at the modulation of autophagy and exerts hepatoprotective effects through mitochondria. However, it is still unclear which signal transduction pathway that ASD increase autophagy and protect the mitochondria. The purpose of this paper was to explore the mechanisms through which ASD alleviates hepatic steatosis. ASD significantly reduced lipid accumulation in BRL cells. Furthermore, ASD significantly increased the mitophagy acting as increase the colocalization between mitochondria and punctate EGFP-LC3. ASD treatment increased the expression of BNip3, phospho-AMPK, prevented oleic acid (OA) induced LC3-II and phospho-mTOR expression. These effects were similar to the effects cotreatment with rapamycin. ASD treatment could not attenuate the expression of BNip3 blocked by chloroquine (CQ) or siRNA-mediated knockdown of BNip3. These results suggest that Akebia saponin D alleviates hepatic steatosis targeted at BNip3 mediated mitophagy. Activation of BNip3 via ASD may offer a new strategy for treating NAFLD.


Asunto(s)
Hígado Graso/tratamiento farmacológico , Hígado Graso/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Mitofagia/efectos de los fármacos , Mitofagia/genética , Terapia Molecular Dirigida , Saponinas/farmacología , Animales , Línea Celular , Dipsacaceae/química , Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Fitoterapia , Ratas , Saponinas/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...